

Available online at www.sciencedirect.com

J. Math. Anal. Appl. 324 (2006) 663-668

Journal of MATHEMATICAL ANALYSIS AND APPLICATIONS

www.elsevier.com/locate/jmaa

On Bernardi's integral operator and the Briot–Bouquet differential subordination [☆]

Rosihan M. Ali*, V. Ravichandran, N. Seenivasagan

School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM Penang, Malaysia

Received 30 August 2005 Available online 18 January 2006 Submitted by S. Ruscheweyh

Abstract

Let A, B, D, $E \in [-1, 1]$. Conditions on A, B, D and E are determined so that

$$p(z) + \frac{zp'(z)}{\beta p(z) + \gamma} \prec \frac{1 + Dz}{1 + Ez}$$
 implies $p(z) \prec \frac{1 + Az}{1 + Bz}$.

The result is applied to Bernardi's integral operator of two classes of analytic functions. © 2005 Elsevier Inc. All rights reserved.

Keywords: Analytic functions; Univalent functions; Starlike functions; Bernardi's integral operator

1. Introduction

Let \mathcal{A} be the class of all analytic functions f(z) defined in the open unit disk $\Delta := \{z \in \mathbb{C}: |z| < 1\}$ and normalized by the conditions f(0) = 0 = f'(0) - 1. Let $S^*[A, B]$ denote the class of functions $f \in \mathcal{A}$ satisfying the subordination

$$\frac{zf'(z)}{f(z)} \prec \frac{1+Az}{1+Bz} \quad (-1 \leqslant B < A \leqslant 1)$$

* Corresponding author.

0022-247X/\$ - see front matter © 2005 Elsevier Inc. All rights reserved. doi:10.1016/j.jmaa.2005.12.033

 $^{^{\}star}\,$ The authors gratefully acknowledged support from the research grant IRPA 09-02-05-00020 EAR.

E-mail addresses: rosihan@cs.usm.my (R.M. Ali), vravi@cs.usm.my (V. Ravichandran), vasagan2000@yahoo.co.in (N. Seenivasagan).

or the equivalent inequality

$$\left|\frac{zf'(z)}{f(z)} - 1\right| < \left|A - B\frac{zf'(z)}{f(z)}\right| \quad (z \in \Delta, \ -1 \leq B < A \leq 1).$$

Functions in *S**[*A*, *B*] are called the *Janowski starlike functions* [3,6].

For $0 \le \alpha < 1$, the class $S^*[1-2\alpha, -1]$ is the familiar class S^*_{α} of starlike functions of order α , while $S^*[1-\alpha, 0]$ is the class $S^*(\alpha)$ of functions $f \in \mathcal{A}$ satisfying the condition

$$\left|\frac{zf'(z)}{f(z)} - 1\right| < 1 - \alpha \quad (z \in \Delta, \ 0 \le \alpha < 1).$$

For $0 < \alpha \leq 1$, $S^*[\alpha, -\alpha] =: S^*[\alpha]$ is the class of functions $f \in \mathcal{A}$ satisfying the condition

$$\left|\frac{zf'(z)}{f(z)} - 1\right| < \alpha \left|\frac{zf'(z)}{f(z)} + 1\right| \quad (z \in \Delta, \ 0 < \alpha \le 1).$$

For this latter class $S^*[\alpha]$, Parvatham proved the following:

Theorem 1.1. [4, Theorem 1, p. 438] Let $c \ge 0$, $0 < \alpha \le 1$ and δ be given by

$$\delta := \alpha \left[\frac{2 + \alpha + c(1 - \alpha)}{1 + 2\alpha + c(1 - \alpha)} \right]$$

If $f \in S^*[\delta]$, then the function F(z) given by Bernardi's integral

$$F(z) = \frac{c+1}{z^c} \int_0^z t^{c-1} f(t) dt$$
(1.1)

is in $S^*[\alpha]$.

It is well known [2] that the classes of starlike, convex and close-to-convex functions are closed under Bernardi's integral operator. Since $\delta \ge \alpha$, Theorem 1.1 extends the result of Bernardi [2].

Parvatham also considered a similar problem for the class $R[\alpha]$ of functions $f \in \mathcal{A}$ satisfying

$$\left|f'(z) - 1\right| < \alpha \left|f'(z) + 1\right| \quad (z \in \Delta, \ 0 < \alpha \leqslant 1),$$

and proved the following:

Theorem 1.2. [4, Theorem 2, p. 440] Let $c \ge 0$, $0 < \alpha \le 1$ and δ be given by

$$\delta := \alpha \left[\frac{2 - \alpha + c(1 - \alpha)}{1 + c(1 - \alpha)} \right]$$

If $f \in R[\delta]$, then the function F(z) given by Bernardi's integral (1.1) is in $R[\alpha]$.

The class $R[\alpha]$ can be extended to the bigger class R[A, B] consisting of all analytic functions $f(z) \in A$ satisfying

$$f'(z) \prec \frac{1+Az}{1+Bz} \quad (-1 \leqslant B < A \leqslant 1),$$

or in other words,

$$\left|f'(z)-1\right| < \left|A-Bf'(z)\right| \quad (z \in \Delta, \ -1 \leqslant B < A \leqslant 1).$$

664

For $0 \leq \alpha < 1$, the class $R[1 - 2\alpha, -1]$ consists of functions $f \in \mathcal{A}$ for which

$$\Re f'(z) > \alpha \quad (z \in \Delta, \ 0 < \alpha \leq 1),$$

and $R[1 - \alpha, 0] =: R_{\alpha}$ is the class of functions $f \in A$ satisfying the condition

$$\left|f'(z) - 1\right| < 1 - \alpha \quad (z \in \Delta, \ 0 \le \alpha < 1).$$

When $0 < \alpha \leq 1$, the class $R[\alpha, -\alpha]$ is the class $R[\alpha]$ considered by Parvatham [4].

In this paper, we extend Theorems 1.1 and 1.2 to hold true for the more general classes $S^*[A, B]$ and R[A, B], respectively. We shall in fact obtain a more general result relating to the Briot–Bouquet differential subordination, and then apply it to Bernardi's integral operator of the classes $S^*[D, E]$ and R[D, E]. The proofs are, however, very computationally involved.

2. A Briot-Bouquet differential subordination

Theorem 2.1. Let $-1 \leq B < A \leq 1$ and $-1 \leq E \leq 0 < D \leq 1$. For $\beta \geq 0$ and $\beta + \gamma > 0$, let $G := A\beta + B\gamma$, $H := (\beta + \gamma)(D - E)$, $I := (A\beta + B\gamma)(D - E) + (BD - AE)(\beta + \gamma) - kE(A - B)$, $J := (A\beta + B\gamma)(BD - AE)$, and $L := \beta + \gamma + k$. In addition, for all $k \geq 1$, let

$$(L^{2} + G^{2})[(H + J)I - 4H|J|] + 4LGHJ \ge LG[(H - J)^{2} + I^{2}].$$
(2.1)

Further assume that

$$\frac{[\beta(1+A)+\gamma(1+B)+1](A-B)}{[\beta(1+A)+\gamma(1+B)][D(1+B)-E(1+A)]-E(A-B)} \ge 1.$$
(2.2)

Let p(z) *be analytic in* Δ *with* p(0) = 1*. If*

$$p(z) + \frac{zp'(z)}{\beta p(z) + \gamma} \prec \frac{1 + Dz}{1 + Ez},$$

then

$$p(z) \prec \frac{1 + Az}{1 + Bz}$$

Proof. Define P(z) by

$$P(z) := p(z) + \frac{zp'(z)}{\beta p(z) + \gamma}$$

and w(z) by

$$w(z) := \frac{p(z) - 1}{A - Bp(z)},$$

or equivalently by

$$p(z) = \frac{1 + Aw(z)}{1 + Bw(z)}.$$
(2.3)

Then w(z) is meromorphic in Δ and w(0) = 0. We need to show that |w(z)| < 1 in Δ . By a computation from (2.3), we get

$$P(z) = \frac{1 + Aw(z)}{1 + Bw(z)} + \frac{(A - B)zw'(z)}{(1 + Bw(z))[\beta(1 + Aw(z)) + \gamma(1 + Bw(z))]}.$$

Therefore

$$\frac{P(z) - 1}{D - EP(z)} = \frac{(A - B)[(\beta + \gamma)w(z) + (A\beta + B\gamma)w^{2}(z) + zw'(z)]}{[(D - E) + (BD - AE)w(z)][\beta + \gamma + (A\beta + B\gamma)w(z)] - E(A - B)zw'(z)}$$

Assume that there exists a point $z_0 \in \Delta$ such that

$$\max_{|z| \le |z_0|} |w(z)| = |w(z_0)| = 1.$$

Then by [5, Lemma 1.3, p. 28], there exists $k \ge 1$ such that $z_0 w'(z_0) = k w(z_0)$. Let $w(z_0) = e^{i\theta}$. For this z_0 , we have

$$\left|\frac{P(z_0) - 1}{D - EP(z_0)}\right| = \left|\frac{(A - B)[L + Gw(z_0)]}{H + Iw(z_0) + Jw(z_0)^2}\right| = (A - B)[\varphi(\cos\theta)]^{1/2},$$

where

$$\varphi(\cos\theta) := \frac{|L + Ge^{i\theta}|^2}{|He^{-i\theta} + Je^{i\theta} + I|^2} = \frac{L^2 + G^2 + 2LG\cos\theta}{H^2 + J^2 + I^2 + 2HJ\cos2\theta + 2I(H+J)\cos\theta}$$

In view of the fact that

$$\min\{at^{2} + bt + c: -1 \le t \le 1\} = \begin{cases} \frac{4ac-b^{2}}{4a}, & \text{if } a > 0 \text{ and } |b| < 2a, \\ a - |b| + c, & \text{otherwise,} \end{cases}$$

the function

$$\varphi(t) := \frac{L^2 + G^2 + 2LGt}{4HJt^2 + 2I(H+J)t + (H-J)^2 + I^2}$$

is easily seen to be a decreasing function of $t = \cos\theta$ provided (2.1) holds. Thus we have $\varphi(t) \ge \varphi(1) = [(L+G)/(I+J+H)]^2$. Yet another calculation shows that the function $\psi(k) := (L+G)/(I+J+H)$ is an increasing function of k. Since $k \ge 1$, we have $\psi(k) \ge \psi(1)$ and therefore

$$\left|\frac{P(z_0)-1}{D-EP(z_0)}\right| \ge \frac{[\beta(1+A)+\gamma(1+B)+1](A-B)}{[\beta(1+A)+\gamma(1+B)][D(1+B)-E(1+A)]-E(A-B)},$$

which by (2.2) is greater than or equal to 1. This contradicts that $P(z) \prec (1 + Dz)/(1 + Ez)$ and completes the proof. \Box

3. Bernardi's integral operator on $S^*[D, E]$ and R[D, E]

Upon differentiating Bernardi's integral (1.1), we obtain

$$(c+1) f(z) = zF'(z) + cF(z).$$

Logarithmic differentiation now yields

$$\frac{zf'(z)}{f(z)} = p(z) + \frac{zp'(z)}{p(z) + c}$$

with p(z) = zF'(z)/F(z).

Theorem 3.1. Let the conditions of Theorem 2.1 hold with $\beta = 1$ and $\gamma = c > -1$. If $f \in S^*[D, E]$, then the function F(z) given by Bernardi's integral (1.1) is in $S^*[A, B]$.

666

$$(LI - GH)(LH - GI) \ge 0.$$

Observe that when J = 0, condition (2.1) reduces to the equivalent form

Remark 3.1. If
$$A = \alpha$$
, $B = -\alpha$, $D = \delta$ and $E = -\delta$ ($0 < \alpha, \delta \le 1$), then $G = \alpha(1 - c)$, $H = 2\delta(1 + c)$, $I = 2\alpha\delta(1 + k - c)$, $J = 0$ and $L = 1 + c + k$. Since $J = 0$, we need to verify condition (3.1). In this case, $LI - GH = 2\alpha\delta k(2 + k) > 0$. In addition, $LH - GI \ge 0$ becomes $(1 + c)(1 + c + k) \ge \alpha^2(1 - c)(1 - c + k)$. Clearly this condition holds when $c \ge 0$. In the case

-1 < c < 0, since $\frac{(1+c)(2+c)}{(1-c)(2-c)} \leqslant \frac{(1+c)(1+c+k)}{(1-c)(1-c+k)},$

condition (3.1) holds provided $\alpha^2 \leq (1+c)(2+c)/((1-c)(2-c))$. Thus Theorem 3.1 not only reduces to Theorem 1.1 for $c \geq 0$, but also extends it for the case -1 < c < 0.

Corollary 3.1. Let -1 < c < 0, $0 < \alpha \le \sqrt{(1+c)(2+c)/((1-c)(2-c))}$, and δ be as in Theorem 1.1. If $f \in S^*[\delta]$, then the function F(z) given by Bernardi's integral (1.1) belongs to $S^*[\alpha]$.

Remark 3.2. For $A = 1 - \alpha$, B = 0, $D = 1 - \delta$ and E = 0 ($0 \le \alpha, \delta < 1$), we have $G = 1 - \alpha$, $H = (1 - \delta)(1 + c)$, $I = (1 - \alpha)(1 - \delta)$, J = 0 and L = 1 + c + k. Since J = 0, condition (3.1) reduces to

$$(1+c)(1+c+k) - (1-\alpha)^2 \ge 0.$$
(3.2)

Since $(1+c)(1+c+k) - (1-\alpha)^2 \ge (1+c)(2+c) - (1-\alpha)^2$, inequality (3.2) holds provided $\alpha \ge 1 - \sqrt{(1+c)(2+c)}$. This condition holds for $c \ge (\sqrt{4(\alpha-1)^2+1}-3)/2$. This yields the following result for the class $S^*(\delta)$.

Corollary 3.2. Let $\delta := \alpha - (1 - \alpha)/(2 + c - \alpha)$, $f(z) \in S^*(\delta)$ and F(z) be given by Bernardi's integral (1.1). If $\alpha_0 \leq \alpha < 1$, then $F(z) \in S^*(\alpha)$ for all c > -1. Here $\alpha_0 := (3 + c - \sqrt{(3 + c)^2 - 4})/2$.

Theorem 3.2. Under the conditions stated in Theorem 2.1 with $\beta = 0$ and $\gamma = c + 1$, if $f \in R[D, E]$, then the function F(z) given by Bernardi's integral (1.1) is in R[A, B].

Proof. Since

(c+1)f(z) = zF'(z) + cF(z),

we obtain

$$f'(z) = \frac{zF''(z)}{c+1} + F'(z).$$
(3.3)

The result now follows from Theorem 2.1 with p(z) = F'(z), $\beta = 0$ and $\gamma = c + 1$. \Box

Remark 3.3. For $A = \alpha$, $B = -\alpha$, $D = \delta$ and $E = -\delta$ ($0 < \alpha, \delta \leq 1$), then $G = -\alpha(1 + c)$, $H = 2\delta(1 + c)$, $I = 2\alpha\delta(k - 1 - c)$, J = 0 and L = 1 + c + k. Condition (3.1) becomes $4\alpha\delta^2k^2(1 + c)[(1 + c)(1 - \alpha^2) + k(1 + \alpha^2)] \ge 0$,

which holds for any c > -1. This shows that Theorem 3.2 reduces to Theorem 1.2 and that the assertion even holds in the case -1 < c < 0.

(3.1)

Remark 3.4. For $A = \delta$, B = 0, $D = \alpha$ and E = 0 ($0 < \alpha, \delta \le 1$), we have G = I = J = 0, $H = \alpha(1 + c)$, and L = 1 + c + k. In this case condition (3.1) holds for any c > -1. Thus Theorem 3.2 extends the earlier result of Anbudurai [1, Theorem 2.1, p. 20] even in the case -1 < c < 0.

Remark 3.5. For $A = 1 - \alpha$, B = 0, $D = 1 - \delta$ and E = 0 ($0 \le \alpha, \delta < 1$), then G = 0, $H = (1 - \delta)(1 + c)$, I = 0, J = 0 and L = 1 + c + k. Theorem 3.2 yields the following:

Corollary 3.3. *Let* c > -1, $1/(2 + c) \le \alpha < 1$ *and* $\delta := \alpha - (1 - \alpha)/(1 + c)$. *If* $f(z) \in R_{\delta}$, *then* $F(z) \in R_{\alpha}$.

References

- M. Anbudurai, On integral operators of certain subclasses of Caratheodory functions, Bull. Calcutta Math. Soc. 93 (1) (2001) 19–26.
- [2] S.D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc. 135 (1969) 429-446.
- [3] W. Janowski, Some extremal problems for certain families of analytic functions. I, Ann. Polon. Math. 28 (1973) 297–326.
- [4] R. Parvatham, On Bernardi's integral operators of certain classes of functions, Kyungpook Math. J. 42 (2) (2002) 437–441.
- [5] S. Ruscheweyh, Convolutions in Geometric Function Theory, Presses Univ. Montréal, Montreal, PQ, 1982.
- [6] Y. Polatoğlu, M. Bolcal, The radius of convexity for the class of Janowski convex functions of complex order, Mat. Vesnik 54 (1–2) (2002) 9–12.