On Bernardi's integral operator and the Briot-Bouquet differential subordination ${ }^{\text {su}}$

Rosihan M. Ali ${ }^{*}$, V. Ravichandran, N. Seenivasagan
School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM Penang, Malaysia
Received 30 August 2005
Available online 18 January 2006
Submitted by S. Ruscheweyh

Abstract

Let $A, B, D, E \in[-1,1]$. Conditions on A, B, D and E are determined so that

$$
p(z)+\frac{z p^{\prime}(z)}{\beta p(z)+\gamma} \prec \frac{1+D z}{1+E z} \quad \text { implies } p(z) \prec \frac{1+A z}{1+B z} .
$$

The result is applied to Bernardi's integral operator of two classes of analytic functions. © 2005 Elsevier Inc. All rights reserved.

Keywords: Analytic functions; Univalent functions; Starlike functions; Bernardi's integral operator

1. Introduction

Let \mathcal{A} be the class of all analytic functions $f(z)$ defined in the open unit disk $\Delta:=\{z \in$ $\mathbb{C}:|z|<1\}$ and normalized by the conditions $f(0)=0=f^{\prime}(0)-1$. Let $S^{*}[A, B]$ denote the class of functions $f \in \mathcal{A}$ satisfying the subordination

$$
\frac{z f^{\prime}(z)}{f(z)} \prec \frac{1+A z}{1+B z} \quad(-1 \leqslant B<A \leqslant 1)
$$

[^0]or the equivalent inequality
$$
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|<\left|A-B \frac{z f^{\prime}(z)}{f(z)}\right| \quad(z \in \Delta,-1 \leqslant B<A \leqslant 1)
$$

Functions in $S^{*}[A, B]$ are called the Janowski starlike functions $[3,6]$.
For $0 \leqslant \alpha<1$, the class $S^{*}[1-2 \alpha,-1]$ is the familiar class S_{α}^{*} of starlike functions of order α, while $S^{*}[1-\alpha, 0]$ is the class $S^{*}(\alpha)$ of functions $f \in \mathcal{A}$ satisfying the condition

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|<1-\alpha \quad(z \in \Delta, 0 \leqslant \alpha<1)
$$

For $0<\alpha \leqslant 1, S^{*}[\alpha,-\alpha]=: S^{*}[\alpha]$ is the class of functions $f \in \mathcal{A}$ satisfying the condition

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|<\alpha\left|\frac{z f^{\prime}(z)}{f(z)}+1\right| \quad(z \in \Delta, 0<\alpha \leqslant 1)
$$

For this latter class $S^{*}[\alpha]$, Parvatham proved the following:
Theorem 1.1. [4, Theorem 1, p. 438] Let $c \geqslant 0,0<\alpha \leqslant 1$ and δ be given by

$$
\delta:=\alpha\left[\frac{2+\alpha+c(1-\alpha)}{1+2 \alpha+c(1-\alpha)}\right]
$$

If $f \in S^{*}[\delta]$, then the function $F(z)$ given by Bernardi's integral

$$
\begin{equation*}
F(z)=\frac{c+1}{z^{c}} \int_{0}^{z} t^{c-1} f(t) d t \tag{1.1}
\end{equation*}
$$

is in $S^{*}[\alpha]$.
It is well known [2] that the classes of starlike, convex and close-to-convex functions are closed under Bernardi's integral operator. Since $\delta \geqslant \alpha$, Theorem 1.1 extends the result of Bernardi [2].

Parvatham also considered a similar problem for the class $R[\alpha]$ of functions $f \in \mathcal{A}$ satisfying

$$
\left|f^{\prime}(z)-1\right|<\alpha\left|f^{\prime}(z)+1\right| \quad(z \in \Delta, 0<\alpha \leqslant 1)
$$

and proved the following:
Theorem 1.2. [4, Theorem 2, p. 440] Let $c \geqslant 0,0<\alpha \leqslant 1$ and δ be given by

$$
\delta:=\alpha\left[\frac{2-\alpha+c(1-\alpha)}{1+c(1-\alpha)}\right]
$$

If $f \in R[\delta]$, then the function $F(z)$ given by Bernardi's integral (1.1) is in $R[\alpha]$.
The class $R[\alpha]$ can be extended to the bigger class $R[A, B]$ consisting of all analytic functions $f(z) \in \mathcal{A}$ satisfying

$$
f^{\prime}(z) \prec \frac{1+A z}{1+B z} \quad(-1 \leqslant B<A \leqslant 1)
$$

or in other words,

$$
\left|f^{\prime}(z)-1\right|<\left|A-B f^{\prime}(z)\right| \quad(z \in \Delta,-1 \leqslant B<A \leqslant 1)
$$

For $0 \leqslant \alpha<1$, the class $R[1-2 \alpha,-1]$ consists of functions $f \in \mathcal{A}$ for which

$$
\Re f^{\prime}(z)>\alpha \quad(z \in \Delta, 0<\alpha \leqslant 1)
$$

and $R[1-\alpha, 0]=: R_{\alpha}$ is the class of functions $f \in \mathcal{A}$ satisfying the condition

$$
\left|f^{\prime}(z)-1\right|<1-\alpha \quad(z \in \Delta, 0 \leqslant \alpha<1)
$$

When $0<\alpha \leqslant 1$, the class $R[\alpha,-\alpha]$ is the class $R[\alpha]$ considered by Parvatham [4].
In this paper, we extend Theorems 1.1 and 1.2 to hold true for the more general classes $S^{*}[A, B]$ and $R[A, B]$, respectively. We shall in fact obtain a more general result relating to the Briot-Bouquet differential subordination, and then apply it to Bernardi's integral operator of the classes $S^{*}[D, E]$ and $R[D, E]$. The proofs are, however, very computationally involved.

2. A Briot-Bouquet differential subordination

Theorem 2.1. Let $-1 \leqslant B<A \leqslant 1$ and $-1 \leqslant E \leqslant 0<D \leqslant 1$. For $\beta \geqslant 0$ and $\beta+\gamma>0$, let $G:=A \beta+B \gamma, H:=(\beta+\gamma)(D-E), I:=(A \beta+B \gamma)(D-E)+(B D-A E)(\beta+\gamma)-$ $k E(A-B), J:=(A \beta+B \gamma)(B D-A E)$, and $L:=\beta+\gamma+k$. In addition, for all $k \geqslant 1$, let

$$
\begin{equation*}
\left(L^{2}+G^{2}\right)[(H+J) I-4 H|J|]+4 L G H J \geqslant L G\left[(H-J)^{2}+I^{2}\right] \tag{2.1}
\end{equation*}
$$

Further assume that

$$
\begin{equation*}
\frac{[\beta(1+A)+\gamma(1+B)+1](A-B)}{[\beta(1+A)+\gamma(1+B)][D(1+B)-E(1+A)]-E(A-B)} \geqslant 1 \tag{2.2}
\end{equation*}
$$

Let $p(z)$ be analytic in Δ with $p(0)=1$. If

$$
p(z)+\frac{z p^{\prime}(z)}{\beta p(z)+\gamma} \prec \frac{1+D z}{1+E z},
$$

then

$$
p(z) \prec \frac{1+A z}{1+B z} .
$$

Proof. Define $P(z)$ by

$$
P(z):=p(z)+\frac{z p^{\prime}(z)}{\beta p(z)+\gamma}
$$

and $w(z)$ by

$$
w(z):=\frac{p(z)-1}{A-B p(z)},
$$

or equivalently by

$$
\begin{equation*}
p(z)=\frac{1+A w(z)}{1+B w(z)} \tag{2.3}
\end{equation*}
$$

Then $w(z)$ is meromorphic in Δ and $w(0)=0$. We need to show that $|w(z)|<1$ in Δ. By a computation from (2.3), we get

$$
P(z)=\frac{1+A w(z)}{1+B w(z)}+\frac{(A-B) z w^{\prime}(z)}{(1+B w(z))[\beta(1+A w(z))+\gamma(1+B w(z))]}
$$

Therefore

$$
\begin{aligned}
& \frac{P(z)-1}{D}- \\
& \quad=\frac{\left(A-B(z)\left[(\beta+\gamma) w(z)+(A \beta+B \gamma) w^{2}(z)+z w^{\prime}(z)\right]\right.}{[(D-E)+(B D-A E) w(z)][\beta+\gamma+(A \beta+B \gamma) w(z)]-E(A-B) z w^{\prime}(z)} .
\end{aligned}
$$

Assume that there exists a point $z_{0} \in \Delta$ such that

$$
\max _{|z| \leqslant\left|z_{0}\right|}|w(z)|=\left|w\left(z_{0}\right)\right|=1
$$

Then by [5, Lemma 1.3, p. 28], there exists $k \geqslant 1$ such that $z_{0} w^{\prime}\left(z_{0}\right)=k w\left(z_{0}\right)$. Let $w\left(z_{0}\right)=e^{i \theta}$. For this z_{0}, we have

$$
\left|\frac{P\left(z_{0}\right)-1}{D-E P\left(z_{0}\right)}\right|=\left|\frac{(A-B)\left[L+G w\left(z_{0}\right)\right]}{H+I w\left(z_{0}\right)+J w\left(z_{0}\right)^{2}}\right|=(A-B)[\varphi(\cos \theta)]^{1 / 2},
$$

where

$$
\varphi(\cos \theta):=\frac{\left|L+G e^{i \theta}\right|^{2}}{\left|H e^{-i \theta}+J e^{i \theta}+I\right|^{2}}=\frac{L^{2}+G^{2}+2 L G \cos \theta}{H^{2}+J^{2}+I^{2}+2 H J \cos 2 \theta+2 I(H+J) \cos \theta} .
$$

In view of the fact that

$$
\min \left\{a t^{2}+b t+c:-1 \leqslant t \leqslant 1\right\}= \begin{cases}\frac{4 a c-b^{2}}{4 a}, & \text { if } a>0 \text { and }|b|<2 a, \\ a-|b|+c, & \text { otherwise },\end{cases}
$$

the function

$$
\varphi(t):=\frac{L^{2}+G^{2}+2 L G t}{4 H J t^{2}+2 I(H+J) t+(H-J)^{2}+I^{2}}
$$

is easily seen to be a decreasing function of $t=\cos \theta$ provided (2.1) holds. Thus we have $\varphi(t) \geqslant \varphi(1)=[(L+G) /(I+J+H)]^{2}$. Yet another calculation shows that the function $\psi(k):=(L+G) /(I+J+H)$ is an increasing function of k. Since $k \geqslant 1$, we have $\psi(k) \geqslant \psi(1)$ and therefore

$$
\left|\frac{P\left(z_{0}\right)-1}{D-E P\left(z_{0}\right)}\right| \geqslant \frac{[\beta(1+A)+\gamma(1+B)+1](A-B)}{[\beta(1+A)+\gamma(1+B)][D(1+B)-E(1+A)]-E(A-B)},
$$

which by (2.2) is greater than or equal to 1 . This contradicts that $P(z) \prec(1+D z) /(1+E z)$ and completes the proof.

3. Bernardi's integral operator on $S^{*}[D, E]$ and $R[D, E]$

Upon differentiating Bernardi's integral (1.1), we obtain

$$
(c+1) f(z)=z F^{\prime}(z)+c F(z)
$$

Logarithmic differentiation now yields

$$
\frac{z f^{\prime}(z)}{f(z)}=p(z)+\frac{z p^{\prime}(z)}{p(z)+c},
$$

with $p(z)=z F^{\prime}(z) / F(z)$.
Theorem 3.1. Let the conditions of Theorem 2.1 hold with $\beta=1$ and $\gamma=c>-1$. If $f \in$ $S^{*}[D, E]$, then the function $F(z)$ given by Bernardi's integral (1.1) is in $S^{*}[A, B]$.

Observe that when $J=0$, condition (2.1) reduces to the equivalent form

$$
\begin{equation*}
(L I-G H)(L H-G I) \geqslant 0 \tag{3.1}
\end{equation*}
$$

Remark 3.1. If $A=\alpha, B=-\alpha, D=\delta$ and $E=-\delta(0<\alpha, \delta \leqslant 1)$, then $G=\alpha(1-c), H=$ $2 \delta(1+c), I=2 \alpha \delta(1+k-c), J=0$ and $L=1+c+k$. Since $J=0$, we need to verify condition (3.1). In this case, $L I-G H=2 \alpha \delta k(2+k)>0$. In addition, $L H-G I \geqslant 0$ becomes $(1+c)(1+c+k) \geqslant \alpha^{2}(1-c)(1-c+k)$. Clearly this condition holds when $c \geqslant 0$. In the case $-1<c<0$, since

$$
\frac{(1+c)(2+c)}{(1-c)(2-c)} \leqslant \frac{(1+c)(1+c+k)}{(1-c)(1-c+k)},
$$

condition (3.1) holds provided $\alpha^{2} \leqslant(1+c)(2+c) /((1-c)(2-c))$. Thus Theorem 3.1 not only reduces to Theorem 1.1 for $c \geqslant 0$, but also extends it for the case $-1<c<0$.

Corollary 3.1. Let $-1<c<0,0<\alpha \leqslant \sqrt{(1+c)(2+c) /((1-c)(2-c))}$, and δ be as in Theorem 1.1. If $f \in S^{*}[\delta]$, then the function $F(z)$ given by Bernardi's integral (1.1) belongs to $S^{*}[\alpha]$.

Remark 3.2. For $A=1-\alpha, B=0, D=1-\delta$ and $E=0(0 \leqslant \alpha, \delta<1)$, we have $G=1-\alpha$, $H=(1-\delta)(1+c), I=(1-\alpha)(1-\delta), J=0$ and $L=1+c+k$. Since $J=0$, condition (3.1) reduces to

$$
\begin{equation*}
(1+c)(1+c+k)-(1-\alpha)^{2} \geqslant 0 \tag{3.2}
\end{equation*}
$$

Since $(1+c)(1+c+k)-(1-\alpha)^{2} \geqslant(1+c)(2+c)-(1-\alpha)^{2}$, inequality (3.2) holds provided $\alpha \geqslant 1-\sqrt{(1+c)(2+c)}$. This condition holds for $c \geqslant\left(\sqrt{4(\alpha-1)^{2}+1}-3\right) / 2$. This yields the following result for the class $S^{*}(\delta)$.

Corollary 3.2. Let $\delta:=\alpha-(1-\alpha) /(2+c-\alpha), f(z) \in S^{*}(\delta)$ and $F(z)$ be given by Bernardi's integral (1.1). If $\alpha_{0} \leqslant \alpha<1$, then $F(z) \in S^{*}(\alpha)$ for all $c>-1$. Here $\alpha_{0}:=$ $\left(3+c-\sqrt{\left.(3+c)^{2}-4\right)} / 2\right.$.

Theorem 3.2. Under the conditions stated in Theorem 2.1 with $\beta=0$ and $\gamma=c+1$, if $f \in$ $R[D, E]$, then the function $F(z)$ given by Bernardi's integral (1.1) is in $R[A, B]$.

Proof. Since

$$
(c+1) f(z)=z F^{\prime}(z)+c F(z)
$$

we obtain

$$
\begin{equation*}
f^{\prime}(z)=\frac{z F^{\prime \prime}(z)}{c+1}+F^{\prime}(z) \tag{3.3}
\end{equation*}
$$

The result now follows from Theorem 2.1 with $p(z)=F^{\prime}(z), \beta=0$ and $\gamma=c+1$.
Remark 3.3. For $A=\alpha, B=-\alpha, D=\delta$ and $E=-\delta(0<\alpha, \delta \leqslant 1)$, then $G=-\alpha(1+c)$, $H=2 \delta(1+c), I=2 \alpha \delta(k-1-c), J=0$ and $L=1+c+k$. Condition (3.1) becomes

$$
4 \alpha \delta^{2} k^{2}(1+c)\left[(1+c)\left(1-\alpha^{2}\right)+k\left(1+\alpha^{2}\right)\right] \geqslant 0
$$

which holds for any $c>-1$. This shows that Theorem 3.2 reduces to Theorem 1.2 and that the assertion even holds in the case $-1<c<0$.

Remark 3.4. For $A=\delta, B=0, D=\alpha$ and $E=0(0<\alpha, \delta \leqslant 1)$, we have $G=I=J=0$, $H=\alpha(1+c)$, and $L=1+c+k$. In this case condition (3.1) holds for any $c>-1$. Thus Theorem 3.2 extends the earlier result of Anbudurai [1, Theorem 2.1, p. 20] even in the case $-1<c<0$.

Remark 3.5. For $A=1-\alpha, B=0, D=1-\delta$ and $E=0(0 \leqslant \alpha, \delta<1)$, then $G=0, H=$ $(1-\delta)(1+c), I=0, J=0$ and $L=1+c+k$. Theorem 3.2 yields the following:

Corollary 3.3. Let $c>-1,1 /(2+c) \leqslant \alpha<1$ and $\delta:=\alpha-(1-\alpha) /(1+c)$. If $f(z) \in R_{\delta}$, then $F(z) \in R_{\alpha}$.

References

[1] M. Anbudurai, On integral operators of certain subclasses of Caratheodory functions, Bull. Calcutta Math. Soc. 93 (1) (2001) 19-26.
[2] S.D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc. 135 (1969) 429-446.
[3] W. Janowski, Some extremal problems for certain families of analytic functions. I, Ann. Polon. Math. 28 (1973) 297-326.
[4] R. Parvatham, On Bernardi's integral operators of certain classes of functions, Kyungpook Math. J. 42 (2) (2002) 437-441.
[5] S. Ruscheweyh, Convolutions in Geometric Function Theory, Presses Univ. Montréal, Montreal, PQ, 1982.
[6] Y. Polatoğlu, M. Bolcal, The radius of convexity for the class of Janowski convex functions of complex order, Mat. Vesnik 54 (1-2) (2002) 9-12.

[^0]: The authors gratefully acknowledged support from the research grant IRPA 09-02-05-00020 EAR.

 * Corresponding author.

 E-mail addresses: rosihan@cs.usm.my (R.M. Ali), vravi@cs.usm.my (V. Ravichandran), vasagan2000@yahoo.co.in (N. Seenivasagan).

